1
0

Реализована операции Milvus для управления документами и встраиванием, включая функции вставки, запроса и удаления. Внедрите архитектуру RAG с LLM и сервисами встраивания. Добавьте обработку текста для фрагментации и конкатенации. Создайте автономный скрипт для настройки и управления Milvus. Разработайте комплексные тесты API для обработки документов и взаимодействия с LLM, включая имитации для сервисов. Расширьте возможности конфигурации пользователя с помощью дополнительных настроек YAML.

This commit is contained in:
Dmitriy Fofanov
2025-09-19 11:38:31 +03:00
parent 8e7aab5181
commit 636096fd34
38 changed files with 3420 additions and 28 deletions

33
.gitignore vendored
View File

@@ -1,27 +1,6 @@
# ---> Go *.env
# If you prefer the allow list template instead of the deny list, see community template: *.sum
# https://github.com/github/gitignore/blob/main/community/Golang/Go.AllowList.gitignore id_rsa2
# id_rsa2.pub
# Binaries for programs and plugins /tests/RAG.postman_collection.json
*.exe /volumes/
*.exe~
*.dll
*.so
*.dylib
# Test binary, built with `go test -c`
*.test
# Output of the go coverage tool, specifically when used with LiteIDE
*.out
# Dependency directories (remove the comment below to include it)
# vendor/
# Go workspace file
go.work
go.work.sum
# env file
.env

8
.idea/.gitignore generated vendored Normal file
View File

@@ -0,0 +1,8 @@
# Default ignored files
/shelf/
/workspace.xml
# Editor-based HTTP Client requests
/httpRequests/
# Datasource local storage ignored files
/dataSources/
/dataSources.local.xml

13
.idea/easy_rag.iml generated Normal file
View File

@@ -0,0 +1,13 @@
<?xml version="1.0" encoding="UTF-8"?>
<module type="WEB_MODULE" version="4">
<component name="Go" enabled="true">
<buildTags>
<option name="arch" value="amd64" />
</buildTags>
</component>
<component name="NewModuleRootManager">
<content url="file://$MODULE_DIR$" />
<orderEntry type="inheritedJdk" />
<orderEntry type="sourceFolder" forTests="false" />
</component>
</module>

8
.idea/modules.xml generated Normal file
View File

@@ -0,0 +1,8 @@
<?xml version="1.0" encoding="UTF-8"?>
<project version="4">
<component name="ProjectModuleManager">
<modules>
<module fileurl="file://$PROJECT_DIR$/.idea/easy_rag.iml" filepath="$PROJECT_DIR$/.idea/easy_rag.iml" />
</modules>
</component>
</project>

6
.idea/vcs.xml generated Normal file
View File

@@ -0,0 +1,6 @@
<?xml version="1.0" encoding="UTF-8"?>
<project version="4">
<component name="VcsDirectoryMappings">
<mapping directory="" vcs="Git" />
</component>
</project>

454
README.md
View File

@@ -1,2 +1,454 @@
# easy_rag # Easy RAG - Система Retrieval-Augmented Generation
## Обзор
Easy RAG - это мощная система для управления документами и генерации ответов на основе метода Retrieval-Augmented Generation (RAG). Проект реализует полнофункциональное API для загрузки, хранения, поиска и анализа документов с использованием векторных баз данных и современных языковых моделей.
### Ключевые возможности
- 🔍 **Семантический поиск** по документам с использованием векторных эмбеддингов
- 📄 **Управление документами** - загрузка, хранение, получение и удаление
- 🤖 **Интеграция с LLM** - поддержка OpenAI, Ollama и OpenRoute
- 💾 **Векторная база данных** - использование Milvus для хранения эмбеддингов
- 🔧 **Модульная архитектура** - легко расширяемая и настраиваемая система
- 🚀 **RESTful API** - простое и понятное API для интеграции
- 🐳 **Docker-готовность** - контейнеризация для простого развертывания
---
## Архитектура системы
### Компоненты
1. **API слой** (`api/`) - HTTP API на базе Echo Framework
2. **Основная логика** (`internal/pkg/rag/`) - ядро RAG системы
3. **Провайдеры LLM** (`internal/llm/`) - интеграция с языковыми моделями
4. **Провайдеры эмбеддингов** (`internal/embeddings/`) - генерация векторных представлений
5. **База данных** (`internal/database/`) - работа с векторной БД Milvus
6. **Обработка текста** (`internal/pkg/textprocessor/`) - разбиение на чанки
7. **Конфигурация** (`config/`) - управление настройками
### Поддерживаемые провайдеры
#### LLM (Языковые модели):
- **OpenAI** - GPT-3.5, GPT-4 и другие модели
- **Ollama** - локальные открытые модели
- **OpenRoute** - доступ к различным моделям через единый API
#### Эмбеддинги:
- **OpenAI Embeddings** - text-embedding-ada-002 и новые модели
- **Ollama Embeddings** - локальные модели эмбеддингов (например, bge-m3)
#### Векторная база данных:
- **Milvus** - высокопроизводительная векторная база данных
---
## API Документация
### Базовый URL
```
http://localhost:4002/api/v1
```
### Эндпоинты
#### 1. Получить все документы
```http
GET /api/v1/docs
```
**Описание**: Получить список всех сохраненных документов.
**Ответ**:
```json
{
"version": "v1",
"docs": [
{
"id": "document_id",
"filename": "document.txt",
"summary": "Краткое описание документа",
"metadata": {
"category": "Техническая документация",
"author": "Автор"
}
}
]
}
```
#### 2. Загрузить документы
```http
POST /api/v1/upload
```
**Описание**: Загрузить один или несколько документов для обработки и индексации.
**Тело запроса**:
```json
{
"docs": [
{
"content": "Содержимое документа...",
"link": "https://example.com/document",
"filename": "document.txt",
"category": "Категория",
"metadata": {
"author": "Автор",
"date": "2024-01-01"
}
}
]
}
```
**Ответ**:
```json
{
"version": "v1",
"task_id": "unique_task_id",
"expected_time": "10m",
"status": "Обработка начата"
}
```
#### 3. Получить документ по ID
```http
GET /api/v1/doc/{id}
```
**Описание**: Получить детальную информацию о документе по его идентификатору.
**Ответ**:
```json
{
"version": "v1",
"doc": {
"id": "document_id",
"content": "Полное содержимое документа",
"filename": "document.txt",
"summary": "Краткое описание",
"metadata": {
"category": "Категория",
"author": "Автор"
}
}
}
```
#### 4. Задать вопрос
```http
POST /api/v1/ask
```
**Описание**: Задать вопрос на основе проиндексированных документов.
**Тело запроса**:
```json
{
"question": "Что такое ISO 27001?"
}
```
**Ответ**:
```json
{
"version": "v1",
"docs": ["document_id_1", "document_id_2"],
"answer": "ISO 27001 - это международный стандарт информационной безопасности..."
}
```
#### 5. Удалить документ
```http
DELETE /api/v1/doc/{id}
```
**Описание**: Удалить документ по его идентификатору.
**Ответ**:
```json
{
"version": "v1",
"docs": null
}
```
---
## Структуры данных
### Document (Документ)
```go
type Document struct {
ID string `json:"id"` // Уникальный идентификатор
Content string `json:"content"` // Содержимое документа
Link string `json:"link"` // Ссылка на источник
Filename string `json:"filename"` // Имя файла
Category string `json:"category"` // Категория
EmbeddingModel string `json:"embedding_model"` // Модель эмбеддингов
Summary string `json:"summary"` // Краткое описание
Metadata map[string]string `json:"metadata"` // Метаданные
Vector []float32 `json:"vector"` // Векторное представление
}
```
### Embedding (Эмбеддинг)
```go
type Embedding struct {
ID string `json:"id"` // Уникальный идентификатор
DocumentID string `json:"document_id"` // ID связанного документа
Vector []float32 `json:"vector"` // Векторное представление
TextChunk string `json:"text_chunk"` // Фрагмент текста
Dimension int64 `json:"dimension"` // Размерность вектора
Order int64 `json:"order"` // Порядок фрагмента
Score float32 `json:"score"` // Оценка релевантности
}
```
---
## Установка и настройка
### Требования
- Go 1.24.3+
- Milvus векторная база данных
- Ollama (для локальных моделей) или API ключи для OpenAI/OpenRoute
### 1. Клонирование репозитория
```bash
git clone https://github.com/elchemista/easy_rag.git
cd easy_rag
```
### 2. Установка зависимостей
```bash
go mod tidy
```
### 3. Настройка окружения
Создайте файл `.env` или установите переменные окружения:
```env
# LLM настройки
OPENAI_API_KEY=your_openai_api_key
OPENAI_ENDPOINT=https://api.openai.com/v1
OPENAI_MODEL=gpt-3.5-turbo
OPENROUTE_API_KEY=your_openroute_api_key
OPENROUTE_ENDPOINT=https://openrouter.ai/api/v1
OPENROUTE_MODEL=anthropic/claude-3-haiku
OLLAMA_ENDPOINT=http://localhost:11434/api/chat
OLLAMA_MODEL=qwen3:latest
# Эмбеддинги
OPENAI_EMBEDDING_API_KEY=your_openai_api_key
OPENAI_EMBEDDING_ENDPOINT=https://api.openai.com/v1
OPENAI_EMBEDDING_MODEL=text-embedding-ada-002
OLLAMA_EMBEDDING_ENDPOINT=http://localhost:11434
OLLAMA_EMBEDDING_MODEL=bge-m3
# База данных
MILVUS_HOST=localhost:19530
```
### 4. Запуск Milvus
```bash
# Используя Docker
docker run -d --name milvus-standalone \
-p 19530:19530 -p 9091:9091 \
milvusdb/milvus:latest
```
### 5. Запуск приложения
```bash
go run cmd/rag/main.go
```
API будет доступно по адресу `http://localhost:4002`
---
## Запуск с Docker
### Сборка образа
```bash
docker build -f deploy/Dockerfile -t easy-rag .
```
### Запуск контейнера
```bash
docker run -d -p 4002:4002 \
-e MILVUS_HOST=your_milvus_host:19530 \
-e OLLAMA_ENDPOINT=http://your_ollama_host:11434/api/chat \
-e OLLAMA_MODEL=qwen3:latest \
easy-rag
```
---
## Примеры использования
### 1. Загрузка документа
```bash
curl -X POST http://localhost:4002/api/v1/upload \
-H "Content-Type: application/json" \
-d '{
"docs": [{
"content": "Это тестовый документ для демонстрации RAG системы.",
"filename": "test.txt",
"category": "Тест",
"metadata": {
"author": "Пользователь",
"type": "demo"
}
}]
}'
```
### 2. Поиск ответа
```bash
curl -X POST http://localhost:4002/api/v1/ask \
-H "Content-Type: application/json" \
-d '{
"question": "О чем этот документ?"
}'
```
### 3. Получение всех документов
```bash
curl http://localhost:4002/api/v1/docs
```
---
## Архитектурные особенности
### Модульность
Система спроектирована с использованием интерфейсов, что позволяет легко:
- Переключаться между различными LLM провайдерами
- Использовать разные модели эмбеддингов
- Менять векторную базу данных
- Добавлять новые методы обработки текста
### Обработка текста
- Автоматическое разбиение документов на чанки
- Генерация эмбеддингов для каждого фрагмента
- Сохранение порядка фрагментов для корректной реконструкции
### Поиск и ранжирование
- Семантический поиск по векторным представлениям
- Ранжирование результатов по релевантности
- Контекстная генерация ответов на основе найденных документов
---
## Разработка и тестирование
### Структура проекта
```
easy_rag/
├── api/ # HTTP API обработчики
├── cmd/rag/ # Точка входа приложения
├── config/ # Конфигурация
├── deploy/ # Docker файлы
├── internal/ # Внутренняя логика
│ ├── database/ # Интерфейсы БД
│ ├── embeddings/ # Провайдеры эмбеддингов
│ ├── llm/ # Провайдеры LLM
│ ├── models/ # Модели данных
│ └── pkg/ # Пакеты общего назначения
├── scripts/ # Вспомогательные скрипты
└── tests/ # Тесты и коллекции Postman
```
### Запуск тестов
```bash
go test ./...
```
### Использование Postman
В папке `tests/` находится коллекция Postman для тестирования API:
```
tests/RAG.postman_collection.json
```
---
## Производительность и масштабирование
### Рекомендации по производительности
- Используйте SSD для хранения векторной базы данных
- Настройте индексы Milvus для оптимальной производительности
- Рассмотрите использование GPU для генерации эмбеддингов
- Кэшируйте часто запрашиваемые результаты
### Масштабирование
- Горизонтальное масштабирование Milvus кластера
- Балансировка нагрузки между несколькими экземплярами API
- Асинхронная обработка загрузки документов
- Использование очередей для обработки больших объемов данных
---
## Устранение неполадок
### Частые проблемы
1. **Не удается подключиться к Milvus**
- Проверьте, что Milvus запущен и доступен
- Убедитесь в правильности MILVUS_HOST
2. **Ошибки LLM провайдера**
- Проверьте API ключи
- Убедитесь в доступности эндпоинтов
- Проверьте правильность названий моделей
3. **Медленная обработка документов**
- Уменьшите размер чанков
- Используйте более быстрые модели эмбеддингов
- Оптимизируйте настройки Milvus
---
## Вклад в проект
Мы приветствуем вклад в развитие проекта! Пожалуйста:
1. Форкните репозиторий
2. Создайте ветку для новой функции
3. Внесите изменения
4. Добавьте тесты
5. Отправьте Pull Request
---
## Лицензия
Проект распространяется под лицензией MIT. См. файл `LICENSE` для подробностей.
---
## Поддержка
Если у вас есть вопросы или проблемы:
- Создайте Issue в GitHub репозитории
- Обратитесь к документации API
- Проверьте примеры в папке `tests/`
---
## Roadmap
### Ближайшие планы
- [ ] Поддержка дополнительных форматов документов (PDF, DOCX)
- [ ] Веб-интерфейс для управления документами
- [ ] Улучшенная система метаданных
- [ ] Поддержка multimodal моделей
- [ ] Кэширование результатов
- [ ] Мониторинг и метрики
### Долгосрочные цели
- [ ] Поддержка множественных языков
- [ ] Федеративный поиск по нескольким источникам
- [ ] Интеграция с внешними системами (SharePoint, Confluence)
- [ ] Продвинутая аналитика использования
- [ ] Система разрешений и ролей

35
api/api.go Normal file
View File

@@ -0,0 +1,35 @@
package api
import (
"fmt"
"github.com/labstack/echo/v4"
"easy_rag/internal/pkg/rag"
"github.com/labstack/echo/v4/middleware"
)
const (
// APIVersion is the version of the API
APIVersion = "v1"
)
func NewAPI(e *echo.Echo, rag *rag.Rag) {
// Middleware
e.Use(middleware.Logger())
e.Use(middleware.Recover())
// put rag pointer in context
e.Use(func(next echo.HandlerFunc) echo.HandlerFunc {
return func(c echo.Context) error {
c.Set("Rag", rag)
return next(c)
}
})
api := e.Group(fmt.Sprintf("/api/%s", APIVersion))
api.POST("/upload", UploadHandler)
api.POST("/ask", AskDocHandler)
api.GET("/docs", ListAllDocsHandler)
api.GET("/doc/:id", GetDocHandler)
api.DELETE("/doc/:id", DeleteDocHandler)
}

248
api/handler.go Normal file
View File

@@ -0,0 +1,248 @@
package api
import (
"fmt"
"github.com/labstack/echo/v4"
"log"
"net/http"
"easy_rag/internal/models"
"easy_rag/internal/pkg/rag"
"easy_rag/internal/pkg/textprocessor"
"github.com/google/uuid"
)
type UploadDoc struct {
Content string `json:"content"`
Link string `json:"link"`
Filename string `json:"filename"`
Category string `json:"category"`
Metadata map[string]string `json:"metadata"`
}
type RequestUpload struct {
Docs []UploadDoc `json:"docs"`
}
type RequestQuestion struct {
Question string `json:"question"`
}
type ResposeQuestion struct {
Version string `json:"version"`
Docs []models.Document `json:"docs"`
Answer string `json:"answer"`
}
func UploadHandler(c echo.Context) error {
// Retrieve the RAG instance from context
rag := c.Get("Rag").(*rag.Rag)
var request RequestUpload
if err := c.Bind(&request); err != nil {
return ErrorHandler(err, c)
}
// Generate a unique task ID
taskID := uuid.NewString()
// Launch the upload process in a separate goroutine
go func(taskID string, request RequestUpload) {
log.Printf("Task %s: started processing", taskID)
defer log.Printf("Task %s: completed processing", taskID)
var docs []models.Document
for idx, doc := range request.Docs {
// Generate a unique ID for each document
docID := uuid.NewString()
log.Printf("Task %s: processing document %d with generated ID %s (filename: %s)", taskID, idx, docID, doc.Filename)
// Step 1: Create chunks from document content
chunks := textprocessor.CreateChunks(doc.Content)
log.Printf("Task %s: created %d chunks for document %s", taskID, len(chunks), docID)
// Step 2: Generate summary for the document
var summaryChunks string
if len(chunks) < 4 {
summaryChunks = doc.Content
} else {
summaryChunks = textprocessor.ConcatenateStrings(chunks[:3])
}
log.Printf("Task %s: generating summary for document %s", taskID, docID)
summary, err := rag.LLM.Generate(fmt.Sprintf("Give me only summary of the following text: %s", summaryChunks))
if err != nil {
log.Printf("Task %s: error generating summary for document %s: %v", taskID, docID, err)
return
}
log.Printf("Task %s: generated summary for document %s", taskID, docID)
// Step 3: Vectorize the summary
log.Printf("Task %s: vectorizing summary for document %s", taskID, docID)
vectorSum, err := rag.Embeddings.Vectorize(summary)
if err != nil {
log.Printf("Task %s: error vectorizing summary for document %s: %v", taskID, docID, err)
return
}
log.Printf("Task %s: vectorized summary for document %s", taskID, docID)
// Step 4: Save the document
document := models.Document{
ID: docID, // Use generated ID
Content: "",
Link: doc.Link,
Filename: doc.Filename,
Category: doc.Category,
EmbeddingModel: rag.Embeddings.GetModel(),
Summary: summary,
Vector: vectorSum[0],
Metadata: doc.Metadata,
}
log.Printf("Task %s: saving document %s", taskID, docID)
if err := rag.Database.SaveDocument(document); err != nil {
log.Printf("Task %s: error saving document %s: %v", taskID, docID, err)
return
}
log.Printf("Task %s: saved document %s", taskID, docID)
// Step 5: Process and save embeddings for each chunk
var embeddings []models.Embedding
for order, chunk := range chunks {
log.Printf("Task %s: vectorizing chunk %d for document %s", taskID, order, docID)
vectorEmbedding, err := rag.Embeddings.Vectorize(chunk)
if err != nil {
log.Printf("Task %s: error vectorizing chunk %d for document %s: %v", taskID, order, docID, err)
return
}
log.Printf("Task %s: vectorized chunk %d for document %s", taskID, order, docID)
embedding := models.Embedding{
ID: uuid.NewString(),
DocumentID: docID,
Vector: vectorEmbedding[0],
TextChunk: chunk,
Dimension: int64(1024),
Order: int64(order),
}
embeddings = append(embeddings, embedding)
}
log.Printf("Task %s: saving %d embeddings for document %s", taskID, len(embeddings), docID)
if err := rag.Database.SaveEmbeddings(embeddings); err != nil {
log.Printf("Task %s: error saving embeddings for document %s: %v", taskID, docID, err)
return
}
log.Printf("Task %s: saved embeddings for document %s", taskID, docID)
docs = append(docs, document)
}
}(taskID, request)
// Return the task ID and expected completion time
return c.JSON(http.StatusAccepted, map[string]interface{}{
"version": APIVersion,
"task_id": taskID,
"expected_time": "10m",
"status": "Processing started",
})
}
func ListAllDocsHandler(c echo.Context) error {
rag := c.Get("Rag").(*rag.Rag)
docs, err := rag.Database.ListDocuments()
if err != nil {
return ErrorHandler(err, c)
}
return c.JSON(http.StatusOK, map[string]interface{}{
"version": APIVersion,
"docs": docs,
})
}
func GetDocHandler(c echo.Context) error {
rag := c.Get("Rag").(*rag.Rag)
id := c.Param("id")
doc, err := rag.Database.GetDocument(id)
if err != nil {
return ErrorHandler(err, c)
}
return c.JSON(http.StatusOK, map[string]interface{}{
"version": APIVersion,
"doc": doc,
})
}
func AskDocHandler(c echo.Context) error {
rag := c.Get("Rag").(*rag.Rag)
var request RequestQuestion
err := c.Bind(&request)
if err != nil {
return ErrorHandler(err, c)
}
questionV, err := rag.Embeddings.Vectorize(request.Question)
if err != nil {
return ErrorHandler(err, c)
}
embeddings, err := rag.Database.Search(questionV)
if err != nil {
return ErrorHandler(err, c)
}
if len(embeddings) == 0 {
return c.JSON(http.StatusOK, map[string]interface{}{
"version": APIVersion,
"docs": nil,
"answer": "Don't found any relevant documents",
})
}
answer, err := rag.LLM.Generate(fmt.Sprintf("Given the following information: %s \nAnswer the question: %s", embeddings[0].TextChunk, request.Question))
if err != nil {
return ErrorHandler(err, c)
}
// Use a map to track unique DocumentIDs
docSet := make(map[string]struct{})
for _, embedding := range embeddings {
docSet[embedding.DocumentID] = struct{}{}
}
// Convert the map keys to a slice
docs := make([]string, 0, len(docSet))
for docID := range docSet {
docs = append(docs, docID)
}
return c.JSON(http.StatusOK, map[string]interface{}{
"version": APIVersion,
"docs": docs,
"answer": answer,
})
}
func DeleteDocHandler(c echo.Context) error {
rag := c.Get("Rag").(*rag.Rag)
id := c.Param("id")
err := rag.Database.DeleteDocument(id)
if err != nil {
return ErrorHandler(err, c)
}
return c.JSON(http.StatusOK, map[string]interface{}{
"version": APIVersion,
"docs": nil,
})
}
func ErrorHandler(err error, c echo.Context) error {
return c.JSON(http.StatusBadRequest, map[string]interface{}{
"error": err.Error(),
})
}

43
cmd/rag/main.go Normal file
View File

@@ -0,0 +1,43 @@
package main
import (
"easy_rag/api"
"easy_rag/config"
"easy_rag/internal/database"
"easy_rag/internal/embeddings"
"easy_rag/internal/llm"
"easy_rag/internal/pkg/rag"
"github.com/labstack/echo/v4"
)
// Rag is the main struct for the rag application
func main() {
cfg := config.NewConfig()
llm := llm.NewOllama(
cfg.OllamaEndpoint,
cfg.OllamaModel,
)
embeddings := embeddings.NewOllamaEmbeddings(
cfg.OllamaEmbeddingEndpoint,
cfg.OllamaEmbeddingModel,
)
database := database.NewMilvus(cfg.MilvusHost)
// Rag instance
rag := rag.NewRag(
llm,
embeddings,
database,
)
// Echo WebServer instance
e := echo.New()
// Wrapper for API
api.NewAPI(e, rag)
// Start Server
e.Logger.Fatal(e.Start(":4002"))
}

38
config/config.go Normal file
View File

@@ -0,0 +1,38 @@
package config
import cfg "github.com/eschao/config"
type Config struct {
// LLM
OpenAIAPIKey string `env:"OPENAI_API_KEY"`
OpenAIEndpoint string `env:"OPENAI_ENDPOINT"`
OpenAIModel string `env:"OPENAI_MODEL"`
OpenRouteAPIKey string `env:"OPENROUTE_API_KEY"`
OpenRouteEndpoint string `env:"OPENROUTE_ENDPOINT"`
OpenRouteModel string `env:"OPENROUTE_MODEL"`
OllamaEndpoint string `env:"OLLAMA_ENDPOINT"`
OllamaModel string `env:"OLLAMA_MODEL"`
// Embeddings
OpenAIEmbeddingAPIKey string `env:"OPENAI_EMBEDDING_API_KEY"`
OpenAIEmbeddingEndpoint string `env:"OPENAI_EMBEDDING_ENDPOINT"`
OpenAIEmbeddingModel string `env:"OPENAI_EMBEDDING_MODEL"`
OllamaEmbeddingEndpoint string `env:"OLLAMA_EMBEDDING_ENDPOINT"`
OllamaEmbeddingModel string `env:"OLLAMA_EMBEDDING_MODEL"`
// Database
MilvusHost string `env:"MILVUS_HOST"`
}
func NewConfig() Config {
config := Config{
MilvusHost: "192.168.10.56:19530",
OllamaEmbeddingEndpoint: "http://192.168.10.56:11434",
OllamaEmbeddingModel: "bge-m3",
OllamaEndpoint: "http://192.168.10.56:11434/api/chat",
OllamaModel: "qwen3:latest",
}
cfg.ParseEnv(&config)
return config
}

16
deploy/Dockerfile Normal file
View File

@@ -0,0 +1,16 @@
FROM golang:1.20 AS builder
WORKDIR /cmd
COPY . .
RUN go mod download
RUN go build -o rag ./cmd/rag
FROM alpine:latest
WORKDIR /root/
COPY --from=builder /cmd/rag ./
CMD ["./rag"]

View File

5
embedEtcd.yaml Normal file
View File

@@ -0,0 +1,5 @@
listen-client-urls: http://0.0.0.0:2379
advertise-client-urls: http://0.0.0.0:2379
quota-backend-bytes: 4294967296
auto-compaction-mode: revision
auto-compaction-retention: '1000'

49
go.mod Normal file
View File

@@ -0,0 +1,49 @@
module easy_rag
go 1.24.3
require (
github.com/eschao/config v0.1.0
github.com/google/uuid v1.6.0
github.com/jonathanhecl/chunker v0.0.1
github.com/labstack/echo/v4 v4.13.4
github.com/milvus-io/milvus-sdk-go/v2 v2.4.2
github.com/stretchr/testify v1.10.0
)
require (
github.com/cockroachdb/errors v1.9.1 // indirect
github.com/cockroachdb/logtags v0.0.0-20211118104740-dabe8e521a4f // indirect
github.com/cockroachdb/redact v1.1.3 // indirect
github.com/davecgh/go-spew v1.1.1 // indirect
github.com/getsentry/sentry-go v0.12.0 // indirect
github.com/gogo/protobuf v1.3.2 // indirect
github.com/golang/protobuf v1.5.2 // indirect
github.com/grpc-ecosystem/go-grpc-middleware v1.3.0 // indirect
github.com/kr/pretty v0.3.0 // indirect
github.com/kr/text v0.2.0 // indirect
github.com/labstack/gommon v0.4.2 // indirect
github.com/mattn/go-colorable v0.1.14 // indirect
github.com/mattn/go-isatty v0.0.20 // indirect
github.com/milvus-io/milvus-proto/go-api/v2 v2.4.10-0.20240819025435-512e3b98866a // indirect
github.com/pkg/errors v0.9.1 // indirect
github.com/pmezard/go-difflib v1.0.0 // indirect
github.com/rogpeppe/go-internal v1.8.1 // indirect
github.com/stretchr/objx v0.5.2 // indirect
github.com/tidwall/gjson v1.14.4 // indirect
github.com/tidwall/match v1.1.1 // indirect
github.com/tidwall/pretty v1.2.0 // indirect
github.com/valyala/bytebufferpool v1.0.0 // indirect
github.com/valyala/fasttemplate v1.2.2 // indirect
golang.org/x/crypto v0.38.0 // indirect
golang.org/x/net v0.40.0 // indirect
golang.org/x/sync v0.14.0 // indirect
golang.org/x/sys v0.33.0 // indirect
golang.org/x/text v0.25.0 // indirect
golang.org/x/time v0.11.0 // indirect
google.golang.org/genproto v0.0.0-20220503193339-ba3ae3f07e29 // indirect
google.golang.org/grpc v1.48.0 // indirect
google.golang.org/protobuf v1.33.0 // indirect
gopkg.in/yaml.v2 v2.2.8 // indirect
gopkg.in/yaml.v3 v3.0.1 // indirect
)

View File

@@ -0,0 +1,20 @@
package database
import "easy_rag/internal/models"
// database interface
// Database defines the interface for interacting with a database
type Database interface {
SaveDocument(document models.Document) error // the content will be chunked and saved
GetDocumentInfo(id string) (models.Document, error) // return the document with the given id without content
GetDocument(id string) (models.Document, error) // return the document with the given id with content assembled
Search(vector [][]float32) ([]models.Embedding, error)
ListDocuments() ([]models.Document, error)
DeleteDocument(id string) error
SaveEmbeddings(embeddings []models.Embedding) error
// to implement in future
// SearchByCategory(category []string) ([]Embedding, error)
// SearchByMetadata(metadata map[string]string) ([]Embedding, error)
// GetAllEmbeddingByDocumentID(documentID string) ([]Embedding, error)
}

View File

@@ -0,0 +1,142 @@
package database
import (
"bytes"
"context"
"fmt"
"sort"
"easy_rag/internal/models"
"easy_rag/internal/pkg/database/milvus"
)
// implement database interface for milvus
type Milvus struct {
Host string
Client *milvus.Client
}
func NewMilvus(host string) *Milvus {
milviusClient, err := milvus.NewClient(host)
if err != nil {
panic(err)
}
return &Milvus{
Host: host,
Client: milviusClient,
}
}
func (m *Milvus) SaveDocument(document models.Document) error {
// for now lets use context background
ctx := context.Background()
return m.Client.InsertDocuments(ctx, []models.Document{document})
}
func (m *Milvus) SaveEmbeddings(embeddings []models.Embedding) error {
ctx := context.Background()
return m.Client.InsertEmbeddings(ctx, embeddings)
}
func (m *Milvus) GetDocumentInfo(id string) (models.Document, error) {
ctx := context.Background()
doc, err := m.Client.GetDocumentByID(ctx, id)
if err != nil {
return models.Document{}, err
}
if len(doc) == 0 {
return models.Document{}, nil
}
return models.Document{
ID: doc["ID"].(string),
Link: doc["Link"].(string),
Filename: doc["Filename"].(string),
Category: doc["Category"].(string),
EmbeddingModel: doc["EmbeddingModel"].(string),
Summary: doc["Summary"].(string),
Metadata: doc["Metadata"].(map[string]string),
}, nil
}
func (m *Milvus) GetDocument(id string) (models.Document, error) {
ctx := context.Background()
doc, err := m.Client.GetDocumentByID(ctx, id)
if err != nil {
return models.Document{}, err
}
embeds, err := m.Client.GetAllEmbeddingByDocID(ctx, id)
if err != nil {
return models.Document{}, err
}
// order embed by order
sort.Slice(embeds, func(i, j int) bool {
return embeds[i].Order < embeds[j].Order
})
// concatenate text chunks
var buf bytes.Buffer
for _, embed := range embeds {
buf.WriteString(embed.TextChunk)
}
textChunks := buf.String()
if len(doc) == 0 {
return models.Document{}, nil
}
return models.Document{
ID: doc["ID"].(string),
Content: textChunks,
Link: doc["Link"].(string),
Filename: doc["Filename"].(string),
Category: doc["Category"].(string),
EmbeddingModel: doc["EmbeddingModel"].(string),
Summary: doc["Summary"].(string),
Metadata: doc["Metadata"].(map[string]string),
}, nil
}
func (m *Milvus) Search(vector [][]float32) ([]models.Embedding, error) {
ctx := context.Background()
results, err := m.Client.Search(ctx, vector, 10)
if err != nil {
return nil, err
}
return results, nil
}
func (m *Milvus) ListDocuments() ([]models.Document, error) {
ctx := context.Background()
docs, err := m.Client.GetAllDocuments(ctx)
if err != nil {
return nil, fmt.Errorf("failed to get docs: %w", err)
}
return docs, nil
}
func (m *Milvus) DeleteDocument(id string) error {
ctx := context.Background()
err := m.Client.DeleteDocument(ctx, id)
if err != nil {
return err
}
err = m.Client.DeleteEmbedding(ctx, id)
if err != nil {
return err
}
return nil
}

View File

@@ -0,0 +1,8 @@
package embeddings
// implement embeddings interface
type EmbeddingsService interface {
// generate embedding from text
Vectorize(text string) ([][]float32, error)
GetModel() string
}

View File

@@ -0,0 +1,78 @@
package embeddings
import (
"bytes"
"encoding/json"
"fmt"
"io"
"net/http"
)
type OllamaEmbeddings struct {
Endpoint string
Model string
}
func NewOllamaEmbeddings(endpoint string, model string) *OllamaEmbeddings {
return &OllamaEmbeddings{
Endpoint: endpoint,
Model: model,
}
}
// Vectorize generates an embedding for the provided text
func (o *OllamaEmbeddings) Vectorize(text string) ([][]float32, error) {
// Define the request payload
payload := map[string]string{
"model": o.Model,
"input": text,
}
// Convert the payload to JSON
jsonData, err := json.Marshal(payload)
if err != nil {
return nil, fmt.Errorf("failed to marshal request payload: %w", err)
}
// Create the HTTP request
url := fmt.Sprintf("%s/api/embed", o.Endpoint)
req, err := http.NewRequest("POST", url, bytes.NewBuffer(jsonData))
if err != nil {
return nil, fmt.Errorf("failed to create HTTP request: %w", err)
}
req.Header.Set("Content-Type", "application/json")
// Execute the HTTP request
client := &http.Client{}
resp, err := client.Do(req)
if err != nil {
return nil, fmt.Errorf("failed to make HTTP request: %w", err)
}
defer resp.Body.Close()
// Check for non-200 status code
if resp.StatusCode != http.StatusOK {
body, _ := io.ReadAll(resp.Body)
return nil, fmt.Errorf("received non-200 response: %s", body)
}
// Read and parse the response body
body, err := io.ReadAll(resp.Body)
if err != nil {
return nil, fmt.Errorf("failed to read response body: %w", err)
}
// Assuming the response JSON contains an "embedding" field with a float32 array
var response struct {
Embeddings [][]float32 `json:"embeddings"`
}
if err := json.Unmarshal(body, &response); err != nil {
return nil, fmt.Errorf("failed to unmarshal response: %w", err)
}
return response.Embeddings, nil
}
func (o *OllamaEmbeddings) GetModel() string {
return o.Model
}

View File

@@ -0,0 +1,23 @@
package embeddings
type OpenAIEmbeddings struct {
APIKey string
Endpoint string
Model string
}
func NewOpenAIEmbeddings(apiKey string, endpoint string, model string) *OpenAIEmbeddings {
return &OpenAIEmbeddings{
APIKey: apiKey,
Endpoint: endpoint,
Model: model,
}
}
func (o *OpenAIEmbeddings) Vectorize(text string) ([]float32, error) {
return nil, nil
}
func (o *OpenAIEmbeddings) GetModel() string {
return o.Model
}

8
internal/llm/llm.go Normal file
View File

@@ -0,0 +1,8 @@
package llm
// implement llm interface
type LLMService interface {
// generate text from prompt
Generate(prompt string) (string, error)
GetModel() string
}

View File

@@ -0,0 +1,82 @@
package llm
import (
"bytes"
"encoding/json"
"fmt"
"io"
"net/http"
)
type Ollama struct {
Endpoint string
Model string
}
func NewOllama(endpoint string, model string) *Ollama {
return &Ollama{
Endpoint: endpoint,
Model: model,
}
}
// Response represents the structure of the expected response from the API.
type Response struct {
Model string `json:"model"`
CreatedAt string `json:"created_at"`
Message struct {
Role string `json:"role"`
Content string `json:"content"`
} `json:"message"`
}
// Generate sends a prompt to the Ollama endpoint and returns the response
func (o *Ollama) Generate(prompt string) (string, error) {
// Create the request payload
payload := map[string]interface{}{
"model": o.Model,
"messages": []map[string]string{
{
"role": "user",
"content": prompt,
},
},
"stream": false,
}
// Marshal the payload into JSON
data, err := json.Marshal(payload)
if err != nil {
return "", fmt.Errorf("failed to marshal payload: %w", err)
}
// Make the POST request
resp, err := http.Post(o.Endpoint, "application/json", bytes.NewBuffer(data))
if err != nil {
return "", fmt.Errorf("failed to make request: %w", err)
}
defer resp.Body.Close()
// Read and parse the response
body, err := io.ReadAll(resp.Body)
if err != nil {
return "", fmt.Errorf("failed to read response: %w", err)
}
if resp.StatusCode != http.StatusOK {
return "", fmt.Errorf("API returned error: %s", string(body))
}
// Unmarshal the response into a predefined structure
var response Response
if err := json.Unmarshal(body, &response); err != nil {
return "", fmt.Errorf("failed to unmarshal response: %w", err)
}
// Extract and return the content from the nested structure
return response.Message.Content, nil
}
func (o *Ollama) GetModel() string {
return o.Model
}

View File

@@ -0,0 +1,24 @@
package llm
type OpenAI struct {
APIKey string
Endpoint string
Model string
}
func NewOpenAI(apiKey string, endpoint string, model string) *OpenAI {
return &OpenAI{
APIKey: apiKey,
Endpoint: endpoint,
Model: model,
}
}
func (o *OpenAI) Generate(prompt string) (string, error) {
return "", nil
// TODO: implement
}
func (o *OpenAI) GetModel() string {
return o.Model
}

View File

@@ -0,0 +1,155 @@
package openroute
// Request represents the main request structure.
type Request struct {
Messages []MessageRequest `json:"messages,omitempty"`
Prompt string `json:"prompt,omitempty"`
Model string `json:"model,omitempty"`
ResponseFormat *ResponseFormat `json:"response_format,omitempty"`
Stop []string `json:"stop,omitempty"`
Stream bool `json:"stream,omitempty"`
MaxTokens int `json:"max_tokens,omitempty"`
Temperature float64 `json:"temperature,omitempty"`
Tools []Tool `json:"tools,omitempty"`
ToolChoice ToolChoice `json:"tool_choice,omitempty"`
Seed int `json:"seed,omitempty"`
TopP float64 `json:"top_p,omitempty"`
TopK int `json:"top_k,omitempty"`
FrequencyPenalty float64 `json:"frequency_penalty,omitempty"`
PresencePenalty float64 `json:"presence_penalty,omitempty"`
RepetitionPenalty float64 `json:"repetition_penalty,omitempty"`
LogitBias map[int]float64 `json:"logit_bias,omitempty"`
TopLogprobs int `json:"top_logprobs,omitempty"`
MinP float64 `json:"min_p,omitempty"`
TopA float64 `json:"top_a,omitempty"`
Prediction *Prediction `json:"prediction,omitempty"`
Transforms []string `json:"transforms,omitempty"`
Models []string `json:"models,omitempty"`
Route string `json:"route,omitempty"`
Provider *ProviderPreferences `json:"provider,omitempty"`
IncludeReasoning bool `json:"include_reasoning,omitempty"`
}
// ResponseFormat represents the response format structure.
type ResponseFormat struct {
Type string `json:"type"`
}
// Prediction represents the prediction structure.
type Prediction struct {
Type string `json:"type"`
Content string `json:"content"`
}
// ProviderPreferences represents the provider preferences structure.
type ProviderPreferences struct {
RefererURL string `json:"referer_url,omitempty"`
SiteName string `json:"site_name,omitempty"`
}
// Message represents the message structure.
type MessageRequest struct {
Role MessageRole `json:"role"`
Content interface{} `json:"content"` // Can be string or []ContentPart
Name string `json:"name,omitempty"`
ToolCallID string `json:"tool_call_id,omitempty"`
}
type MessageRole string
const (
RoleSystem MessageRole = "system"
RoleUser MessageRole = "user"
RoleAssistant MessageRole = "assistant"
)
// ContentPart represents the content part structure.
type ContentPart struct {
Type ContnetType `json:"type"`
Text string `json:"text,omitempty"`
ImageURL *ImageURL `json:"image_url,omitempty"`
}
type ContnetType string
const (
ContentTypeText ContnetType = "text"
ContentTypeImage ContnetType = "image_url"
)
// ImageURL represents the image URL structure.
type ImageURL struct {
URL string `json:"url"`
Detail string `json:"detail,omitempty"`
}
// FunctionDescription represents the function description structure.
type FunctionDescription struct {
Description string `json:"description,omitempty"`
Name string `json:"name"`
Parameters interface{} `json:"parameters"` // JSON Schema object
}
// Tool represents the tool structure.
type Tool struct {
Type string `json:"type"`
Function FunctionDescription `json:"function"`
}
// ToolChoice represents the tool choice structure.
type ToolChoice struct {
Type string `json:"type"`
Function struct {
Name string `json:"name"`
} `json:"function"`
}
type Response struct {
ID string `json:"id"`
Choices []Choice `json:"choices"`
Created int64 `json:"created"`
Model string `json:"model"`
Object string `json:"object"`
SystemFingerprint *string `json:"system_fingerprint,omitempty"`
Usage *ResponseUsage `json:"usage,omitempty"`
}
type ResponseUsage struct {
PromptTokens int `json:"prompt_tokens"`
CompletionTokens int `json:"completion_tokens"`
TotalTokens int `json:"total_tokens"`
}
type Choice struct {
FinishReason string `json:"finish_reason"`
Text string `json:"text,omitempty"`
Message *MessageResponse `json:"message,omitempty"`
Delta *Delta `json:"delta,omitempty"`
Error *ErrorResponse `json:"error,omitempty"`
}
type MessageResponse struct {
Content string `json:"content"`
Role string `json:"role"`
Reasoning string `json:"reasoning,omitempty"`
ToolCalls []ToolCall `json:"tool_calls,omitempty"`
}
type Delta struct {
Content string `json:"content"`
Role string `json:"role,omitempty"`
Reasoning string `json:"reasoning,omitempty"`
ToolCalls []ToolCall `json:"tool_calls,omitempty"`
}
type ErrorResponse struct {
Code int `json:"code"`
Message string `json:"message"`
Metadata map[string]interface{} `json:"metadata,omitempty"`
}
type ToolCall struct {
ID string `json:"id"`
Type string `json:"type"`
Function interface{} `json:"function"`
}

View File

@@ -0,0 +1,198 @@
package openroute
import "context"
type RouterAgentConfig struct {
ResponseFormat *ResponseFormat `json:"response_format,omitempty"`
Stop []string `json:"stop,omitempty"`
MaxTokens int `json:"max_tokens,omitempty"`
Temperature float64 `json:"temperature,omitempty"`
Tools []Tool `json:"tools,omitempty"`
ToolChoice ToolChoice `json:"tool_choice,omitempty"`
Seed int `json:"seed,omitempty"`
TopP float64 `json:"top_p,omitempty"`
TopK int `json:"top_k,omitempty"`
FrequencyPenalty float64 `json:"frequency_penalty,omitempty"`
PresencePenalty float64 `json:"presence_penalty,omitempty"`
RepetitionPenalty float64 `json:"repetition_penalty,omitempty"`
LogitBias map[int]float64 `json:"logit_bias,omitempty"`
TopLogprobs int `json:"top_logprobs,omitempty"`
MinP float64 `json:"min_p,omitempty"`
TopA float64 `json:"top_a,omitempty"`
}
type RouterAgent struct {
client *OpenRouterClient
model string
config RouterAgentConfig
}
func NewRouterAgent(client *OpenRouterClient, model string, config RouterAgentConfig) *RouterAgent {
return &RouterAgent{
client: client,
model: model,
config: config,
}
}
func (agent RouterAgent) Completion(prompt string) (*Response, error) {
request := Request{
Prompt: prompt,
Model: agent.model,
ResponseFormat: agent.config.ResponseFormat,
Stop: agent.config.Stop,
MaxTokens: agent.config.MaxTokens,
Temperature: agent.config.Temperature,
Tools: agent.config.Tools,
ToolChoice: agent.config.ToolChoice,
Seed: agent.config.Seed,
TopP: agent.config.TopP,
TopK: agent.config.TopK,
FrequencyPenalty: agent.config.FrequencyPenalty,
PresencePenalty: agent.config.PresencePenalty,
RepetitionPenalty: agent.config.RepetitionPenalty,
LogitBias: agent.config.LogitBias,
TopLogprobs: agent.config.TopLogprobs,
MinP: agent.config.MinP,
TopA: agent.config.TopA,
Stream: false,
}
return agent.client.FetchChatCompletions(request)
}
func (agent RouterAgent) CompletionStream(prompt string, outputChan chan Response, processingChan chan interface{}, errChan chan error, ctx context.Context) {
request := Request{
Prompt: prompt,
Model: agent.model,
ResponseFormat: agent.config.ResponseFormat,
Stop: agent.config.Stop,
MaxTokens: agent.config.MaxTokens,
Temperature: agent.config.Temperature,
Tools: agent.config.Tools,
ToolChoice: agent.config.ToolChoice,
Seed: agent.config.Seed,
TopP: agent.config.TopP,
TopK: agent.config.TopK,
FrequencyPenalty: agent.config.FrequencyPenalty,
PresencePenalty: agent.config.PresencePenalty,
RepetitionPenalty: agent.config.RepetitionPenalty,
LogitBias: agent.config.LogitBias,
TopLogprobs: agent.config.TopLogprobs,
MinP: agent.config.MinP,
TopA: agent.config.TopA,
Stream: true,
}
agent.client.FetchChatCompletionsStream(request, outputChan, processingChan, errChan, ctx)
}
func (agent RouterAgent) Chat(messages []MessageRequest) (*Response, error) {
request := Request{
Messages: messages,
Model: agent.model,
ResponseFormat: agent.config.ResponseFormat,
Stop: agent.config.Stop,
MaxTokens: agent.config.MaxTokens,
Temperature: agent.config.Temperature,
Tools: agent.config.Tools,
ToolChoice: agent.config.ToolChoice,
Seed: agent.config.Seed,
TopP: agent.config.TopP,
TopK: agent.config.TopK,
FrequencyPenalty: agent.config.FrequencyPenalty,
PresencePenalty: agent.config.PresencePenalty,
RepetitionPenalty: agent.config.RepetitionPenalty,
LogitBias: agent.config.LogitBias,
TopLogprobs: agent.config.TopLogprobs,
MinP: agent.config.MinP,
TopA: agent.config.TopA,
Stream: false,
}
return agent.client.FetchChatCompletions(request)
}
func (agent RouterAgent) ChatStream(messages []MessageRequest, outputChan chan Response, processingChan chan interface{}, errChan chan error, ctx context.Context) {
request := Request{
Messages: messages,
Model: agent.model,
ResponseFormat: agent.config.ResponseFormat,
Stop: agent.config.Stop,
MaxTokens: agent.config.MaxTokens,
Temperature: agent.config.Temperature,
Tools: agent.config.Tools,
ToolChoice: agent.config.ToolChoice,
Seed: agent.config.Seed,
TopP: agent.config.TopP,
TopK: agent.config.TopK,
FrequencyPenalty: agent.config.FrequencyPenalty,
PresencePenalty: agent.config.PresencePenalty,
RepetitionPenalty: agent.config.RepetitionPenalty,
LogitBias: agent.config.LogitBias,
TopLogprobs: agent.config.TopLogprobs,
MinP: agent.config.MinP,
TopA: agent.config.TopA,
Stream: true,
}
agent.client.FetchChatCompletionsStream(request, outputChan, processingChan, errChan, ctx)
}
type RouterAgentChat struct {
RouterAgent
Messages []MessageRequest
}
func NewRouterAgentChat(client *OpenRouterClient, model string, config RouterAgentConfig, system_prompt string) RouterAgentChat {
return RouterAgentChat{
RouterAgent: RouterAgent{
client: client,
model: model,
config: config,
},
Messages: []MessageRequest{
{
Role: RoleSystem,
Content: system_prompt,
},
},
}
}
func (agent *RouterAgentChat) Chat(message string) error {
agent.Messages = append(agent.Messages, MessageRequest{
Role: RoleUser,
Content: message,
})
request := Request{
Messages: agent.Messages,
Model: agent.model,
ResponseFormat: agent.config.ResponseFormat,
Stop: agent.config.Stop,
MaxTokens: agent.config.MaxTokens,
Temperature: agent.config.Temperature,
Tools: agent.config.Tools,
ToolChoice: agent.config.ToolChoice,
Seed: agent.config.Seed,
TopP: agent.config.TopP,
TopK: agent.config.TopK,
FrequencyPenalty: agent.config.FrequencyPenalty,
PresencePenalty: agent.config.PresencePenalty,
RepetitionPenalty: agent.config.RepetitionPenalty,
LogitBias: agent.config.LogitBias,
TopLogprobs: agent.config.TopLogprobs,
MinP: agent.config.MinP,
TopA: agent.config.TopA,
Stream: false,
}
response, err := agent.client.FetchChatCompletions(request)
agent.Messages = append(agent.Messages, MessageRequest{
Role: RoleAssistant,
Content: response.Choices[0].Message.Content,
})
return err
}

View File

@@ -0,0 +1,188 @@
package openroute
import (
"bufio"
"bytes"
"context"
"encoding/json"
"fmt"
"io"
"net/http"
"strings"
)
type OpenRouterClient struct {
apiKey string
apiURL string
httpClient *http.Client
}
func NewOpenRouterClient(apiKey string) *OpenRouterClient {
return &OpenRouterClient{
apiKey: apiKey,
apiURL: "https://openrouter.ai/api/v1",
httpClient: &http.Client{},
}
}
func NewOpenRouterClientFull(apiKey string, apiUrl string, client *http.Client) *OpenRouterClient {
return &OpenRouterClient{
apiKey: apiKey,
apiURL: apiUrl,
httpClient: client,
}
}
func (c *OpenRouterClient) FetchChatCompletions(request Request) (*Response, error) {
headers := map[string]string{
"Authorization": "Bearer " + c.apiKey,
"Content-Type": "application/json",
}
if request.Provider != nil {
headers["HTTP-Referer"] = request.Provider.RefererURL
headers["X-Title"] = request.Provider.SiteName
}
body, err := json.Marshal(request)
if err != nil {
return nil, err
}
req, err := http.NewRequest("POST", fmt.Sprintf("%s/chat/completions", c.apiURL), bytes.NewBuffer(body))
if err != nil {
return nil, err
}
for key, value := range headers {
req.Header.Set(key, value)
}
resp, err := c.httpClient.Do(req)
if err != nil {
return nil, err
}
defer resp.Body.Close()
if resp.StatusCode != http.StatusOK {
return nil, fmt.Errorf("unexpected status code: %d", resp.StatusCode)
}
output, err := io.ReadAll(resp.Body)
if err != nil {
return nil, err
}
outputReponse := &Response{}
err = json.Unmarshal(output, outputReponse)
if err != nil {
return nil, err
}
return outputReponse, nil
}
func (c *OpenRouterClient) FetchChatCompletionsStream(request Request, outputChan chan Response, processingChan chan interface{}, errChan chan error, ctx context.Context) {
headers := map[string]string{
"Authorization": "Bearer " + c.apiKey,
"Content-Type": "application/json",
}
if request.Provider != nil {
headers["HTTP-Referer"] = request.Provider.RefererURL
headers["X-Title"] = request.Provider.SiteName
}
body, err := json.Marshal(request)
if err != nil {
errChan <- err
close(errChan)
close(outputChan)
close(processingChan)
return
}
req, err := http.NewRequest("POST", fmt.Sprintf("%s/chat/completions", c.apiURL), bytes.NewBuffer(body))
if err != nil {
errChan <- err
close(errChan)
close(outputChan)
close(processingChan)
return
}
for key, value := range headers {
req.Header.Set(key, value)
}
resp, err := c.httpClient.Do(req)
if err != nil {
errChan <- err
close(errChan)
close(outputChan)
close(processingChan)
return
}
go func() {
defer resp.Body.Close()
defer close(errChan)
defer close(outputChan)
defer close(processingChan)
if resp.StatusCode != http.StatusOK {
errChan <- fmt.Errorf("unexpected status code: %d", resp.StatusCode)
return
}
reader := bufio.NewReader(resp.Body)
for {
select {
case <-ctx.Done():
errChan <- ctx.Err()
close(errChan)
close(outputChan)
close(processingChan)
return
default:
line, err := reader.ReadString('\n')
line = strings.TrimSpace(line)
if strings.HasPrefix(line, ":") {
select {
case processingChan <- true:
case <-ctx.Done():
errChan <- ctx.Err()
return
}
continue
}
if line != "" {
if strings.Compare(line[6:], "[DONE]") == 0 {
return
}
response := Response{}
err = json.Unmarshal([]byte(line[6:]), &response)
if err != nil {
errChan <- err
return
}
select {
case outputChan <- response:
case <-ctx.Done():
errChan <- ctx.Err()
return
}
}
if err != nil {
if err == io.EOF {
return
}
errChan <- err
return
}
}
}
}()
}

View File

@@ -0,0 +1,24 @@
package llm
type OpenRoute struct {
APIKey string
Endpoint string
Model string
}
func NewOpenRoute(apiKey string, endpoint string, model string) *OpenAI {
return &OpenAI{
APIKey: apiKey,
Endpoint: endpoint,
Model: model,
}
}
func (o *OpenRoute) Generate(prompt string) (string, error) {
return "", nil
// TODO: implement
}
func (o *OpenRoute) GetModel() string {
return o.Model
}

27
internal/models/models.go Normal file
View File

@@ -0,0 +1,27 @@
package models
// type VectorEmbedding [][]float32
// type Vector []float32
// Document represents the data structure for storing documents
type Document struct {
ID string `json:"id" milvus:"ID"` // Unique identifier for the document
Content string `json:"content" milvus:"Content"` // Text content of the document become chunks of data will not be saved
Link string `json:"link" milvus:"Link"` // Link to the document
Filename string `json:"filename" milvus:"Filename"` // Filename of the document
Category string `json:"category" milvus:"Category"` // Category of the document
EmbeddingModel string `json:"embedding_model" milvus:"EmbeddingModel"` // Embedding model used to generate the embedding
Summary string `json:"summary" milvus:"Summary"` // Summary of the document
Metadata map[string]string `json:"metadata" milvus:"Metadata"` // Additional metadata (e.g., author, timestamp)
Vector []float32 `json:"vector" milvus:"Vector"`
}
// Embedding represents the vector embedding for a document or query
type Embedding struct {
ID string `json:"id" milvus:"ID"` // Unique identifier
DocumentID string `json:"document_id" milvus:"DocumentID"` // Unique identifier linked to a Document
Vector []float32 `json:"vector" milvus:"Vector"` // The embedding vector
TextChunk string `json:"text_chunk" milvus:"TextChunk"` // Text chunk of the document
Dimension int64 `json:"dimension" milvus:"Dimension"` // Dimensionality of the vector
Order int64 `json:"order" milvus:"Order"` // Order of the embedding to build the content back
Score float32 `json:"score"` // Score of the embedding
}

View File

@@ -0,0 +1,169 @@
package milvus
import (
"context"
"fmt"
"log"
"time"
"github.com/milvus-io/milvus-sdk-go/v2/client"
"github.com/milvus-io/milvus-sdk-go/v2/entity"
)
type Client struct {
Instance client.Client
}
// InitMilvusClient initializes the Milvus client and returns a wrapper around it.
func NewClient(milvusAddr string) (*Client, error) {
ctx, cancel := context.WithTimeout(context.Background(), 10*time.Second)
defer cancel()
c, err := client.NewClient(ctx, client.Config{Address: milvusAddr})
if err != nil {
log.Printf("Failed to connect to Milvus: %v", err)
return nil, err
}
client := &Client{Instance: c}
err = client.EnsureCollections(ctx)
if err != nil {
return nil, err
}
return client, nil
}
// EnsureCollections ensures that the required collections ("documents" and "chunks") exist.
// If they don't exist, it creates them based on the predefined structs.
func (m *Client) EnsureCollections(ctx context.Context) error {
collections := []struct {
Name string
Schema *entity.Schema
IndexField string
IndexType string
MetricType entity.MetricType
Nlist int
}{
{
Name: "documents",
Schema: createDocumentSchema(),
IndexField: "Vector", // Indexing the Vector field for similarity search
IndexType: "IVF_FLAT",
MetricType: entity.L2,
Nlist: 10, // Number of clusters for IVF_FLAT index
},
{
Name: "chunks",
Schema: createEmbeddingSchema(),
IndexField: "Vector", // Indexing the Vector field for similarity search
IndexType: "IVF_FLAT",
MetricType: entity.L2,
Nlist: 10,
},
}
for _, collection := range collections {
// drop collection
// err := m.Instance.DropCollection(ctx, collection.Name)
// if err != nil {
// return fmt.Errorf("failed to drop collection '%s': %w", collection.Name, err)
// }
// Ensure the collection exists
exists, err := m.Instance.HasCollection(ctx, collection.Name)
if err != nil {
return fmt.Errorf("failed to check collection existence: %w", err)
}
if !exists {
err := m.Instance.CreateCollection(ctx, collection.Schema, entity.DefaultShardNumber)
if err != nil {
return fmt.Errorf("failed to create collection '%s': %w", collection.Name, err)
}
log.Printf("Collection '%s' created successfully", collection.Name)
} else {
log.Printf("Collection '%s' already exists", collection.Name)
}
// Ensure the default partition exists
hasPartition, err := m.Instance.HasPartition(ctx, collection.Name, "_default")
if err != nil {
return fmt.Errorf("failed to check default partition for collection '%s': %w", collection.Name, err)
}
if !hasPartition {
err = m.Instance.CreatePartition(ctx, collection.Name, "_default")
if err != nil {
return fmt.Errorf("failed to create default partition for collection '%s': %w", collection.Name, err)
}
log.Printf("Default partition created for collection '%s'", collection.Name)
}
// Skip index creation if IndexField is empty
if collection.IndexField == "" {
continue
}
// Ensure the index exists
log.Printf("Creating index on field '%s' for collection '%s'", collection.IndexField, collection.Name)
idx, err := entity.NewIndexIvfFlat(collection.MetricType, collection.Nlist)
if err != nil {
return fmt.Errorf("failed to create IVF_FLAT index: %w", err)
}
err = m.Instance.CreateIndex(ctx, collection.Name, collection.IndexField, idx, false)
if err != nil {
return fmt.Errorf("failed to create index on field '%s' for collection '%s': %w", collection.IndexField, collection.Name, err)
}
log.Printf("Index created on field '%s' for collection '%s'", collection.IndexField, collection.Name)
}
err := m.Instance.LoadCollection(ctx, "documents", false)
if err != nil {
log.Fatalf("failed to load collection, err: %v", err)
}
err = m.Instance.LoadCollection(ctx, "chunks", false)
if err != nil {
log.Fatalf("failed to load collection, err: %v", err)
}
return nil
}
// Helper functions for creating schemas
func createDocumentSchema() *entity.Schema {
return entity.NewSchema().
WithName("documents").
WithDescription("Collection for storing documents").
WithField(entity.NewField().WithName("ID").WithDataType(entity.FieldTypeVarChar).WithIsPrimaryKey(true).WithMaxLength(512)).
WithField(entity.NewField().WithName("Content").WithDataType(entity.FieldTypeVarChar).WithMaxLength(65535)).
WithField(entity.NewField().WithName("Link").WithDataType(entity.FieldTypeVarChar).WithMaxLength(512)).
WithField(entity.NewField().WithName("Filename").WithDataType(entity.FieldTypeVarChar).WithMaxLength(512)).
WithField(entity.NewField().WithName("Category").WithDataType(entity.FieldTypeVarChar).WithMaxLength(8048)).
WithField(entity.NewField().WithName("EmbeddingModel").WithDataType(entity.FieldTypeVarChar).WithMaxLength(256)).
WithField(entity.NewField().WithName("Summary").WithDataType(entity.FieldTypeVarChar).WithMaxLength(65535)).
WithField(entity.NewField().WithName("Metadata").WithDataType(entity.FieldTypeVarChar).WithMaxLength(65535)).
WithField(entity.NewField().WithName("Vector").WithDataType(entity.FieldTypeFloatVector).WithDim(1024)) // bge-m3
}
func createEmbeddingSchema() *entity.Schema {
return entity.NewSchema().
WithName("chunks").
WithDescription("Collection for storing document embeddings").
WithField(entity.NewField().WithName("ID").WithDataType(entity.FieldTypeVarChar).WithIsPrimaryKey(true).WithMaxLength(512)).
WithField(entity.NewField().WithName("DocumentID").WithDataType(entity.FieldTypeVarChar).WithMaxLength(512)).
WithField(entity.NewField().WithName("Vector").WithDataType(entity.FieldTypeFloatVector).WithDim(1024)). // bge-m3
WithField(entity.NewField().WithName("TextChunk").WithDataType(entity.FieldTypeVarChar).WithMaxLength(65535)).
WithField(entity.NewField().WithName("Dimension").WithDataType(entity.FieldTypeInt32)).
WithField(entity.NewField().WithName("Order").WithDataType(entity.FieldTypeInt32))
}
// Close closes the Milvus client connection.
func (m *Client) Close() {
m.Instance.Close()
}

View File

@@ -0,0 +1,32 @@
package milvus
import (
"reflect"
"testing"
)
func TestNewClient(t *testing.T) {
type args struct {
milvusAddr string
}
tests := []struct {
name string
args args
want *Client
wantErr bool
}{
// TODO: Add test cases.
}
for _, tt := range tests {
t.Run(tt.name, func(t *testing.T) {
got, err := NewClient(tt.args.milvusAddr)
if (err != nil) != tt.wantErr {
t.Errorf("NewClient() error = %v, wantErr %v", err, tt.wantErr)
return
}
if !reflect.DeepEqual(got, tt.want) {
t.Errorf("NewClient() = %v, want %v", got, tt.want)
}
})
}
}

View File

@@ -0,0 +1,276 @@
package milvus
import (
"encoding/json"
"fmt"
"easy_rag/internal/models"
"github.com/milvus-io/milvus-sdk-go/v2/client"
"github.com/milvus-io/milvus-sdk-go/v2/entity"
)
// Helper functions for extracting data
func extractIDs(docs []models.Document) []string {
ids := make([]string, len(docs))
for i, doc := range docs {
ids[i] = doc.ID
}
return ids
}
// extractLinks extracts the "Link" field from the documents.
func extractLinks(docs []models.Document) []string {
links := make([]string, len(docs))
for i, doc := range docs {
links[i] = doc.Link
}
return links
}
// extractFilenames extracts the "Filename" field from the documents.
func extractFilenames(docs []models.Document) []string {
filenames := make([]string, len(docs))
for i, doc := range docs {
filenames[i] = doc.Filename
}
return filenames
}
// extractCategories extracts the "Category" field from the documents as a comma-separated string.
func extractCategories(docs []models.Document) []string {
categories := make([]string, len(docs))
for i, doc := range docs {
categories[i] = fmt.Sprintf("%v", doc.Category)
}
return categories
}
// extractEmbeddingModels extracts the "EmbeddingModel" field from the documents.
func extractEmbeddingModels(docs []models.Document) []string {
models := make([]string, len(docs))
for i, doc := range docs {
models[i] = doc.EmbeddingModel
}
return models
}
// extractSummaries extracts the "Summary" field from the documents.
func extractSummaries(docs []models.Document) []string {
summaries := make([]string, len(docs))
for i, doc := range docs {
summaries[i] = doc.Summary
}
return summaries
}
// extractMetadata extracts the "Metadata" field from the documents as a JSON string.
func extractMetadata(docs []models.Document) []string {
metadata := make([]string, len(docs))
for i, doc := range docs {
metaBytes, _ := json.Marshal(doc.Metadata)
metadata[i] = string(metaBytes)
}
return metadata
}
func convertToMetadata(metadata string) map[string]string {
var metadataMap map[string]string
json.Unmarshal([]byte(metadata), &metadataMap)
return metadataMap
}
func extractContents(docs []models.Document) []string {
contents := make([]string, len(docs))
for i, doc := range docs {
contents[i] = doc.Content
}
return contents
}
// extractEmbeddingIDs extracts the "ID" field from the embeddings.
func extractEmbeddingIDs(embeddings []models.Embedding) []string {
ids := make([]string, len(embeddings))
for i, embedding := range embeddings {
ids[i] = embedding.ID
}
return ids
}
// extractDocumentIDs extracts the "DocumentID" field from the embeddings.
func extractDocumentIDs(embeddings []models.Embedding) []string {
documentIDs := make([]string, len(embeddings))
for i, embedding := range embeddings {
documentIDs[i] = embedding.DocumentID
}
return documentIDs
}
// extractVectors extracts the "Vector" field from the embeddings.
func extractVectors(embeddings []models.Embedding) [][]float32 {
vectors := make([][]float32, len(embeddings))
for i, embedding := range embeddings {
vectors[i] = embedding.Vector // Direct assignment since it's already []float32
}
return vectors
}
// extractVectorsDocs extracts the "Vector" field from the documents.
func extractVectorsDocs(docs []models.Document) [][]float32 {
vectors := make([][]float32, len(docs))
for i, doc := range docs {
vectors[i] = doc.Vector // Direct assignment since it's already []float32
}
return vectors
}
// extractTextChunks extracts the "TextChunk" field from the embeddings.
func extractTextChunks(embeddings []models.Embedding) []string {
textChunks := make([]string, len(embeddings))
for i, embedding := range embeddings {
textChunks[i] = embedding.TextChunk
}
return textChunks
}
// extractDimensions extracts the "Dimension" field from the embeddings.
func extractDimensions(embeddings []models.Embedding) []int32 {
dimensions := make([]int32, len(embeddings))
for i, embedding := range embeddings {
dimensions[i] = int32(embedding.Dimension)
}
return dimensions
}
// extractOrders extracts the "Order" field from the embeddings.
func extractOrders(embeddings []models.Embedding) []int32 {
orders := make([]int32, len(embeddings))
for i, embedding := range embeddings {
orders[i] = int32(embedding.Order)
}
return orders
}
func transformResultSet(rs client.ResultSet, outputFields ...string) ([]map[string]interface{}, error) {
if rs == nil || rs.Len() == 0 {
return nil, fmt.Errorf("empty result set")
}
results := []map[string]interface{}{}
for i := 0; i < rs.Len(); i++ { // Iterate through rows
row := map[string]interface{}{}
for _, fieldName := range outputFields {
column := rs.GetColumn(fieldName)
if column == nil {
return nil, fmt.Errorf("column %s does not exist in result set", fieldName)
}
switch column.Type() {
case entity.FieldTypeInt64:
value, err := column.GetAsInt64(i)
if err != nil {
return nil, fmt.Errorf("error getting int64 value for column %s, row %d: %w", fieldName, i, err)
}
row[fieldName] = value
case entity.FieldTypeInt32:
value, err := column.GetAsInt64(i)
if err != nil {
return nil, fmt.Errorf("error getting int64 value for column %s, row %d: %w", fieldName, i, err)
}
row[fieldName] = value
case entity.FieldTypeFloat:
value, err := column.GetAsDouble(i)
if err != nil {
return nil, fmt.Errorf("error getting float value for column %s, row %d: %w", fieldName, i, err)
}
row[fieldName] = value
case entity.FieldTypeDouble:
value, err := column.GetAsDouble(i)
if err != nil {
return nil, fmt.Errorf("error getting double value for column %s, row %d: %w", fieldName, i, err)
}
row[fieldName] = value
case entity.FieldTypeVarChar:
value, err := column.GetAsString(i)
if err != nil {
return nil, fmt.Errorf("error getting string value for column %s, row %d: %w", fieldName, i, err)
}
row[fieldName] = value
default:
return nil, fmt.Errorf("unsupported field type for column %s", fieldName)
}
}
results = append(results, row)
}
return results, nil
}
func transformSearchResultSet(rs client.SearchResult, outputFields ...string) ([]map[string]interface{}, error) {
if rs.ResultCount == 0 {
return nil, fmt.Errorf("empty result set")
}
result := make([]map[string]interface{}, rs.ResultCount)
for i := 0; i < rs.ResultCount; i++ { // Iterate through rows
result[i] = make(map[string]interface{})
for _, fieldName := range outputFields {
column := rs.Fields.GetColumn(fieldName)
result[i]["Score"] = rs.Scores[i]
if column == nil {
return nil, fmt.Errorf("column %s does not exist in result set", fieldName)
}
switch column.Type() {
case entity.FieldTypeInt64:
value, err := column.GetAsInt64(i)
if err != nil {
return nil, fmt.Errorf("error getting int64 value for column %s, row %d: %w", fieldName, i, err)
}
result[i][fieldName] = value
case entity.FieldTypeInt32:
value, err := column.GetAsInt64(i)
if err != nil {
return nil, fmt.Errorf("error getting int64 value for column %s, row %d: %w", fieldName, i, err)
}
result[i][fieldName] = value
case entity.FieldTypeFloat:
value, err := column.GetAsDouble(i)
if err != nil {
return nil, fmt.Errorf("error getting float value for column %s, row %d: %w", fieldName, i, err)
}
result[i][fieldName] = value
case entity.FieldTypeDouble:
value, err := column.GetAsDouble(i)
if err != nil {
return nil, fmt.Errorf("error getting double value for column %s, row %d: %w", fieldName, i, err)
}
result[i][fieldName] = value
case entity.FieldTypeVarChar:
value, err := column.GetAsString(i)
if err != nil {
return nil, fmt.Errorf("error getting string value for column %s, row %d: %w", fieldName, i, err)
}
result[i][fieldName] = value
default:
return nil, fmt.Errorf("unsupported field type for column %s", fieldName)
}
}
}
return result, nil
}

View File

@@ -0,0 +1,270 @@
package milvus
import (
"context"
"fmt"
"sort"
"easy_rag/internal/models"
"github.com/milvus-io/milvus-sdk-go/v2/client"
"github.com/milvus-io/milvus-sdk-go/v2/entity"
)
// InsertDocuments inserts documents into the "documents" collection.
func (m *Client) InsertDocuments(ctx context.Context, docs []models.Document) error {
idColumn := entity.NewColumnVarChar("ID", extractIDs(docs))
contentColumn := entity.NewColumnVarChar("Content", extractContents(docs))
linkColumn := entity.NewColumnVarChar("Link", extractLinks(docs))
filenameColumn := entity.NewColumnVarChar("Filename", extractFilenames(docs))
categoryColumn := entity.NewColumnVarChar("Category", extractCategories(docs))
embeddingModelColumn := entity.NewColumnVarChar("EmbeddingModel", extractEmbeddingModels(docs))
summaryColumn := entity.NewColumnVarChar("Summary", extractSummaries(docs))
metadataColumn := entity.NewColumnVarChar("Metadata", extractMetadata(docs))
vectorColumn := entity.NewColumnFloatVector("Vector", 1024, extractVectorsDocs(docs))
// Insert the data
_, err := m.Instance.Insert(ctx, "documents", "_default", idColumn, contentColumn, linkColumn, filenameColumn,
categoryColumn, embeddingModelColumn, summaryColumn, metadataColumn, vectorColumn)
if err != nil {
return fmt.Errorf("failed to insert documents: %w", err)
}
// Flush the collection
err = m.Instance.Flush(ctx, "documents", false)
if err != nil {
return fmt.Errorf("failed to flush documents collection: %w", err)
}
return nil
}
// InsertEmbeddings inserts embeddings into the "chunks" collection.
func (m *Client) InsertEmbeddings(ctx context.Context, embeddings []models.Embedding) error {
idColumn := entity.NewColumnVarChar("ID", extractEmbeddingIDs(embeddings))
documentIDColumn := entity.NewColumnVarChar("DocumentID", extractDocumentIDs(embeddings))
vectorColumn := entity.NewColumnFloatVector("Vector", 1024, extractVectors(embeddings))
textChunkColumn := entity.NewColumnVarChar("TextChunk", extractTextChunks(embeddings))
dimensionColumn := entity.NewColumnInt32("Dimension", extractDimensions(embeddings))
orderColumn := entity.NewColumnInt32("Order", extractOrders(embeddings))
_, err := m.Instance.Insert(ctx, "chunks", "_default", idColumn, documentIDColumn, vectorColumn,
textChunkColumn, dimensionColumn, orderColumn)
if err != nil {
return fmt.Errorf("failed to insert embeddings: %w", err)
}
err = m.Instance.Flush(ctx, "chunks", false)
if err != nil {
return fmt.Errorf("failed to flush chunks collection: %w", err)
}
return nil
}
// GetDocumentByID retrieves a document from the "documents" collection by ID.
func (m *Client) GetDocumentByID(ctx context.Context, id string) (map[string]interface{}, error) {
collectionName := "documents"
expr := fmt.Sprintf("ID == '%s'", id)
projections := []string{"ID", "Content", "Link", "Filename", "Category", "EmbeddingModel", "Summary", "Metadata"} // Fetch all fields
results, err := m.Instance.Query(ctx, collectionName, nil, expr, projections)
if err != nil {
return nil, fmt.Errorf("failed to query document by ID: %w", err)
}
if len(results) == 0 {
return nil, fmt.Errorf("document with ID '%s' not found", id)
}
mp, err := transformResultSet(results, "ID", "Content", "Link", "Filename", "Category", "EmbeddingModel", "Summary", "Metadata")
if err != nil {
return nil, fmt.Errorf("failed to unmarshal document: %w", err)
}
// convert metadata to map
mp[0]["Metadata"] = convertToMetadata(mp[0]["Metadata"].(string))
return mp[0], err
}
// GetAllDocuments retrieves all documents from the "documents" collection.
func (m *Client) GetAllDocuments(ctx context.Context) ([]models.Document, error) {
collectionName := "documents"
projections := []string{"ID", "Content", "Link", "Filename", "Category", "EmbeddingModel", "Summary", "Metadata"} // Fetch all fields
expr := ""
rs, err := m.Instance.Query(ctx, collectionName, nil, expr, projections, client.WithLimit(1000))
if err != nil {
return nil, fmt.Errorf("failed to query all documents: %w", err)
}
if len(rs) == 0 {
return nil, fmt.Errorf("no documents found in the collection")
}
results, err := transformResultSet(rs, "ID", "Content", "Link", "Filename", "Category", "EmbeddingModel", "Summary", "Metadata")
if err != nil {
return nil, fmt.Errorf("failed to unmarshal all documents: %w", err)
}
var docs []models.Document = make([]models.Document, len(results))
for i, result := range results {
docs[i] = models.Document{
ID: result["ID"].(string),
Content: result["Content"].(string),
Link: result["Link"].(string),
Filename: result["Filename"].(string),
Category: result["Category"].(string),
EmbeddingModel: result["EmbeddingModel"].(string),
Summary: result["Summary"].(string),
Metadata: convertToMetadata(results[0]["Metadata"].(string)),
}
}
return docs, nil
}
// GetAllEmbeddingByDocID retrieves all embeddings linked to a specific DocumentID from the "chunks" collection.
func (m *Client) GetAllEmbeddingByDocID(ctx context.Context, documentID string) ([]models.Embedding, error) {
collectionName := "chunks"
projections := []string{"ID", "DocumentID", "TextChunk", "Order"} // Fetch all fields
expr := fmt.Sprintf("DocumentID == '%s'", documentID)
rs, err := m.Instance.Query(ctx, collectionName, nil, expr, projections, client.WithLimit(1000))
if err != nil {
return nil, fmt.Errorf("failed to query embeddings by DocumentID: %w", err)
}
if rs.Len() == 0 {
return nil, fmt.Errorf("no embeddings found for DocumentID '%s'", documentID)
}
results, err := transformResultSet(rs, "ID", "DocumentID", "TextChunk", "Order")
if err != nil {
return nil, fmt.Errorf("failed to unmarshal all documents: %w", err)
}
var embeddings []models.Embedding = make([]models.Embedding, rs.Len())
for i, result := range results {
embeddings[i] = models.Embedding{
ID: result["ID"].(string),
DocumentID: result["DocumentID"].(string),
TextChunk: result["TextChunk"].(string),
Order: result["Order"].(int64),
}
}
return embeddings, nil
}
func (m *Client) Search(ctx context.Context, vectors [][]float32, topK int) ([]models.Embedding, error) {
const (
collectionName = "chunks"
vectorDim = 1024 // Replace with your actual vector dimension
)
projections := []string{"ID", "DocumentID", "TextChunk", "Order"}
metricType := entity.L2 // Default metric type
// Validate and convert input vectors
searchVectors, err := validateAndConvertVectors(vectors, vectorDim)
if err != nil {
return nil, err
}
// Set search parameters
searchParams, err := entity.NewIndexIvfFlatSearchParam(16) // 16 is the number of clusters for IVF_FLAT index
if err != nil {
return nil, fmt.Errorf("failed to create search params: %w", err)
}
// Perform the search
searchResults, err := m.Instance.Search(ctx, collectionName, nil, "", projections, searchVectors, "Vector", metricType, topK, searchParams, client.WithLimit(10))
if err != nil {
return nil, fmt.Errorf("failed to search collection: %w", err)
}
// Process search results
embeddings, err := processSearchResults(searchResults)
if err != nil {
return nil, fmt.Errorf("failed to process search results: %w", err)
}
return embeddings, nil
}
// validateAndConvertVectors validates vector dimensions and converts them to Milvus-compatible format.
func validateAndConvertVectors(vectors [][]float32, expectedDim int) ([]entity.Vector, error) {
searchVectors := make([]entity.Vector, len(vectors))
for i, vector := range vectors {
if len(vector) != expectedDim {
return nil, fmt.Errorf("vector dimension mismatch: expected %d, got %d", expectedDim, len(vector))
}
searchVectors[i] = entity.FloatVector(vector)
}
return searchVectors, nil
}
// processSearchResults transforms and aggregates the search results into embeddings and sorts by score.
func processSearchResults(results []client.SearchResult) ([]models.Embedding, error) {
var embeddings []models.Embedding
for _, result := range results {
for i := 0; i < result.ResultCount; i++ {
embeddingMap, err := transformSearchResultSet(result, "ID", "DocumentID", "TextChunk", "Order")
if err != nil {
return nil, fmt.Errorf("failed to transform search result set: %w", err)
}
for _, embedding := range embeddingMap {
embeddings = append(embeddings, models.Embedding{
ID: embedding["ID"].(string),
DocumentID: embedding["DocumentID"].(string),
TextChunk: embedding["TextChunk"].(string),
Order: embedding["Order"].(int64), // Assuming 'Order' is a float64 type
Score: embedding["Score"].(float32),
})
}
}
}
// Sort embeddings by score in descending order (higher is better)
sort.Slice(embeddings, func(i, j int) bool {
return embeddings[i].Score > embeddings[j].Score
})
return embeddings, nil
}
// DeleteDocument deletes a document from the "documents" collection by ID.
func (m *Client) DeleteDocument(ctx context.Context, id string) error {
collectionName := "documents"
partitionName := "_default"
expr := fmt.Sprintf("ID == '%s'", id)
err := m.Instance.Delete(ctx, collectionName, partitionName, expr)
if err != nil {
return fmt.Errorf("failed to delete document by ID: %w", err)
}
return nil
}
// DeleteEmbedding deletes an embedding from the "chunks" collection by ID.
func (m *Client) DeleteEmbedding(ctx context.Context, id string) error {
collectionName := "chunks"
partitionName := "_default"
expr := fmt.Sprintf("DocumentID == '%s'", id)
err := m.Instance.Delete(ctx, collectionName, partitionName, expr)
if err != nil {
return fmt.Errorf("failed to delete embedding by DocumentID: %w", err)
}
return nil
}

21
internal/pkg/rag/rag.go Normal file
View File

@@ -0,0 +1,21 @@
package rag
import (
"easy_rag/internal/database"
"easy_rag/internal/embeddings"
"easy_rag/internal/llm"
)
type Rag struct {
LLM llm.LLMService
Embeddings embeddings.EmbeddingsService
Database database.Database
}
func NewRag(llm llm.LLMService, embeddings embeddings.EmbeddingsService, database database.Database) *Rag {
return &Rag{
LLM: llm,
Embeddings: embeddings,
Database: database,
}
}

View File

@@ -0,0 +1,50 @@
package textprocessor
import (
"bytes"
"strings"
"github.com/jonathanhecl/chunker"
)
func CreateChunks(text string) []string {
// Maximum characters per chunk
const maxCharacters = 5000 // too slow otherwise
var chunks []string
var currentChunk strings.Builder
// Use the chunker library to split text into sentences
sentences := chunker.ChunkSentences(text)
for _, sentence := range sentences {
// Check if adding the sentence exceeds the character limit
if currentChunk.Len()+len(sentence) <= maxCharacters {
if currentChunk.Len() > 0 {
currentChunk.WriteString(" ") // Add a space between sentences
}
currentChunk.WriteString(sentence)
} else {
// Add the completed chunk to the chunks slice
chunks = append(chunks, currentChunk.String())
currentChunk.Reset() // Start a new chunk
currentChunk.WriteString(sentence) // Add the sentence to the new chunk
}
}
// Add the last chunk if it has content
if currentChunk.Len() > 0 {
chunks = append(chunks, currentChunk.String())
}
// Return the chunks
return chunks
}
func ConcatenateStrings(strings []string) string {
var result bytes.Buffer
for _, str := range strings {
result.WriteString(str)
}
return result.String()
}

169
scripts/standalone_embed.sh Normal file
View File

@@ -0,0 +1,169 @@
#!/usr/bin/env bash
# Licensed to the LF AI & Data foundation under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
run_embed() {
cat << EOF > embedEtcd.yaml
listen-client-urls: http://0.0.0.0:2379
advertise-client-urls: http://0.0.0.0:2379
quota-backend-bytes: 4294967296
auto-compaction-mode: revision
auto-compaction-retention: '1000'
EOF
cat << EOF > user.yaml
# Extra config to override default milvus.yaml
EOF
sudo docker run -d \
--name milvus-standalone \
--security-opt seccomp:unconfined \
-e ETCD_USE_EMBED=true \
-e ETCD_DATA_DIR=/var/lib/milvus/etcd \
-e ETCD_CONFIG_PATH=/milvus/configs/embedEtcd.yaml \
-e COMMON_STORAGETYPE=local \
-v $(pwd)/volumes/milvus:/var/lib/milvus \
-v $(pwd)/embedEtcd.yaml:/milvus/configs/embedEtcd.yaml \
-v $(pwd)/user.yaml:/milvus/configs/user.yaml \
-p 19530:19530 \
-p 9091:9091 \
-p 2379:2379 \
--health-cmd="curl -f http://localhost:9091/healthz" \
--health-interval=30s \
--health-start-period=90s \
--health-timeout=20s \
--health-retries=3 \
milvusdb/milvus:v2.4.16 \
milvus run standalone 1> /dev/null
}
wait_for_milvus_running() {
echo "Wait for Milvus Starting..."
while true
do
res=`sudo docker ps|grep milvus-standalone|grep healthy|wc -l`
if [ $res -eq 1 ]
then
echo "Start successfully."
echo "To change the default Milvus configuration, add your settings to the user.yaml file and then restart the service."
break
fi
sleep 1
done
}
start() {
res=`sudo docker ps|grep milvus-standalone|grep healthy|wc -l`
if [ $res -eq 1 ]
then
echo "Milvus is running."
exit 0
fi
res=`sudo docker ps -a|grep milvus-standalone|wc -l`
if [ $res -eq 1 ]
then
sudo docker start milvus-standalone 1> /dev/null
else
run_embed
fi
if [ $? -ne 0 ]
then
echo "Start failed."
exit 1
fi
wait_for_milvus_running
}
stop() {
sudo docker stop milvus-standalone 1> /dev/null
if [ $? -ne 0 ]
then
echo "Stop failed."
exit 1
fi
echo "Stop successfully."
}
delete_container() {
res=`sudo docker ps|grep milvus-standalone|wc -l`
if [ $res -eq 1 ]
then
echo "Please stop Milvus service before delete."
exit 1
fi
sudo docker rm milvus-standalone 1> /dev/null
if [ $? -ne 0 ]
then
echo "Delete milvus container failed."
exit 1
fi
echo "Delete milvus container successfully."
}
delete() {
delete_container
sudo rm -rf $(pwd)/volumes
sudo rm -rf $(pwd)/embedEtcd.yaml
sudo rm -rf $(pwd)/user.yaml
echo "Delete successfully."
}
upgrade() {
read -p "Please confirm if you'd like to proceed with the upgrade. The default will be to the latest version. Confirm with 'y' for yes or 'n' for no. > " check
if [ "$check" == "y" ] ||[ "$check" == "Y" ];then
res=`sudo docker ps -a|grep milvus-standalone|wc -l`
if [ $res -eq 1 ]
then
stop
delete_container
fi
curl -sfL https://raw.githubusercontent.com/milvus-io/milvus/master/scripts/standalone_embed.sh -o standalone_embed_latest.sh && \
bash standalone_embed_latest.sh start 1> /dev/null && \
echo "Upgrade successfully."
else
echo "Exit upgrade"
exit 0
fi
}
case $1 in
restart)
stop
start
;;
start)
start
;;
stop)
stop
;;
upgrade)
upgrade
;;
delete)
delete
;;
*)
echo "please use bash standalone_embed.sh restart|start|stop|upgrade|delete"
;;
esac

313
tests/api_test.go Normal file
View File

@@ -0,0 +1,313 @@
package api_test
import (
"bytes"
"easy_rag/internal/models"
"encoding/json"
"github.com/google/uuid"
"net/http"
"net/http/httptest"
"testing"
"easy_rag/api"
"easy_rag/internal/pkg/rag"
"github.com/labstack/echo/v4"
"github.com/stretchr/testify/assert"
"github.com/stretchr/testify/mock"
)
// Example: Test UploadHandler
func TestUploadHandler(t *testing.T) {
e := echo.New()
// Create a mock for the LLM, Embeddings, and Database
mockLLM := new(MockLLMService)
mockEmbeddings := new(MockEmbeddingsService)
mockDB := new(MockDatabase)
// Setup the Rag object
r := &rag.Rag{
LLM: mockLLM,
Embeddings: mockEmbeddings,
Database: mockDB,
}
// We expect calls to these mocks in the background goroutine, for each document.
// The request body
requestBody := api.RequestUpload{
Docs: []api.UploadDoc{
{
Content: "Test document content",
Link: "http://example.com/doc",
Filename: "doc1.txt",
Category: "TestCategory",
Metadata: map[string]string{"Author": "Me"},
},
},
}
// Convert requestBody to JSON
reqBodyBytes, _ := json.Marshal(requestBody)
// Create a new request
req := httptest.NewRequest(http.MethodPost, "/api/v1/upload", bytes.NewReader(reqBodyBytes))
req.Header.Set(echo.HeaderContentType, echo.MIMEApplicationJSON)
// Create a ResponseRecorder
rec := httptest.NewRecorder()
// New echo context
c := e.NewContext(req, rec)
// Set the rag object in context
c.Set("Rag", r)
// Because the UploadHandler spawns a goroutine, we only test the immediate HTTP response.
// We can still set expectations for the calls that happen in the goroutine to ensure they're invoked.
// For example, we expect the summary to be generated, so:
testSummary := "Test summary from LLM"
mockLLM.On("Generate", mock.Anything).Return(testSummary, nil).Maybe() // .Maybe() because the concurrency might not complete by the time we assert
// The embedding vector returned from the embeddings service
testVector := [][]float32{{0.1, 0.2, 0.3, 0.4}}
// We'll mock calls to Vectorize() for summary and each chunk
mockEmbeddings.On("Vectorize", mock.AnythingOfType("string")).Return(testVector, nil).Maybe()
// The database SaveDocument / SaveEmbeddings calls
mockDB.On("SaveDocument", mock.AnythingOfType("models.Document")).Return(nil).Maybe()
mockDB.On("SaveEmbeddings", mock.AnythingOfType("[]models.Embedding")).Return(nil).Maybe()
// Invoke the handler
err := api.UploadHandler(c)
// Check no immediate errors
assert.NoError(t, err)
// Check the response
assert.Equal(t, http.StatusAccepted, rec.Code)
var resp map[string]interface{}
_ = json.Unmarshal(rec.Body.Bytes(), &resp)
// We expect certain fields in the JSON response
assert.Equal(t, "v1", resp["version"])
assert.NotEmpty(t, resp["task_id"])
assert.Equal(t, "Processing started", resp["status"])
// Typically, you might want to wait or do more advanced concurrency checks if you want to test
// the logic in the goroutine, but that goes beyond a simple unit test.
// The background process can be tested more thoroughly in integration or end-to-end tests.
// Optionally assert that our mocks were called
mockLLM.AssertExpectations(t)
mockEmbeddings.AssertExpectations(t)
mockDB.AssertExpectations(t)
}
// Example: Test ListAllDocsHandler
func TestListAllDocsHandler(t *testing.T) {
e := echo.New()
mockLLM := new(MockLLMService)
mockEmbeddings := new(MockEmbeddingsService)
mockDB := new(MockDatabase)
r := &rag.Rag{
LLM: mockLLM,
Embeddings: mockEmbeddings,
Database: mockDB,
}
// Mock data
doc1 := models.Document{
ID: uuid.NewString(),
Filename: "doc1.txt",
Summary: "summary doc1",
}
doc2 := models.Document{
ID: uuid.NewString(),
Filename: "doc2.txt",
Summary: "summary doc2",
}
docs := []models.Document{doc1, doc2}
// Expect the database to return the docs
mockDB.On("ListDocuments").Return(docs, nil)
req := httptest.NewRequest(http.MethodGet, "/api/v1/docs", nil)
rec := httptest.NewRecorder()
c := e.NewContext(req, rec)
c.Set("Rag", r)
err := api.ListAllDocsHandler(c)
assert.NoError(t, err)
assert.Equal(t, http.StatusOK, rec.Code)
var resp map[string]interface{}
_ = json.Unmarshal(rec.Body.Bytes(), &resp)
assert.Equal(t, "v1", resp["version"])
// The "docs" field should match the ones we returned
docsInterface, ok := resp["docs"].([]interface{})
assert.True(t, ok)
assert.Len(t, docsInterface, 2)
// Verify mocks
mockDB.AssertExpectations(t)
}
// Example: Test GetDocHandler
func TestGetDocHandler(t *testing.T) {
e := echo.New()
mockLLM := new(MockLLMService)
mockEmbeddings := new(MockEmbeddingsService)
mockDB := new(MockDatabase)
r := &rag.Rag{
LLM: mockLLM,
Embeddings: mockEmbeddings,
Database: mockDB,
}
// Mock a single doc
docID := "123"
testDoc := models.Document{
ID: docID,
Filename: "doc3.txt",
Summary: "summary doc3",
}
mockDB.On("GetDocument", docID).Return(testDoc, nil)
req := httptest.NewRequest(http.MethodGet, "/api/v1/doc/123", nil)
rec := httptest.NewRecorder()
c := e.NewContext(req, rec)
// set path param
c.SetParamNames("id")
c.SetParamValues(docID)
c.Set("Rag", r)
err := api.GetDocHandler(c)
assert.NoError(t, err)
assert.Equal(t, http.StatusOK, rec.Code)
var resp map[string]interface{}
_ = json.Unmarshal(rec.Body.Bytes(), &resp)
assert.Equal(t, "v1", resp["version"])
docInterface := resp["doc"].(map[string]interface{})
assert.Equal(t, "doc3.txt", docInterface["filename"])
// Verify mocks
mockDB.AssertExpectations(t)
}
// Example: Test AskDocHandler
func TestAskDocHandler(t *testing.T) {
e := echo.New()
mockLLM := new(MockLLMService)
mockEmbeddings := new(MockEmbeddingsService)
mockDB := new(MockDatabase)
r := &rag.Rag{
LLM: mockLLM,
Embeddings: mockEmbeddings,
Database: mockDB,
}
// 1) We expect to Vectorize the question
question := "What is the summary of doc?"
questionVector := [][]float32{{0.5, 0.2, 0.1}}
mockEmbeddings.On("Vectorize", question).Return(questionVector, nil)
// 2) We expect a DB search
emb := []models.Embedding{
{
ID: "emb1",
DocumentID: "doc123",
TextChunk: "Relevant content chunk",
Score: 0.99,
},
}
mockDB.On("Search", questionVector).Return(emb, nil)
// 3) We expect the LLM to generate an answer from the chunk
generatedAnswer := "Here is an answer from the chunk"
// The prompt we pass is something like: "Given the following information: chunk ... Answer the question: question"
mockLLM.On("Generate", mock.AnythingOfType("string")).Return(generatedAnswer, nil)
// Prepare request
reqBody := api.RequestQuestion{
Question: question,
}
reqBytes, _ := json.Marshal(reqBody)
req := httptest.NewRequest(http.MethodPost, "/api/v1/ask", bytes.NewReader(reqBytes))
req.Header.Set(echo.HeaderContentType, echo.MIMEApplicationJSON)
rec := httptest.NewRecorder()
c := e.NewContext(req, rec)
c.Set("Rag", r)
// Execute
err := api.AskDocHandler(c)
// Verify
assert.NoError(t, err)
assert.Equal(t, http.StatusOK, rec.Code)
var resp map[string]interface{}
_ = json.Unmarshal(rec.Body.Bytes(), &resp)
assert.Equal(t, "v1", resp["version"])
assert.Equal(t, generatedAnswer, resp["answer"])
// The docs field should have the docID "doc123"
docsInterface := resp["docs"].([]interface{})
assert.Len(t, docsInterface, 1)
assert.Equal(t, "doc123", docsInterface[0])
// Verify mocks
mockLLM.AssertExpectations(t)
mockEmbeddings.AssertExpectations(t)
mockDB.AssertExpectations(t)
}
// Example: Test DeleteDocHandler
func TestDeleteDocHandler(t *testing.T) {
e := echo.New()
mockLLM := new(MockLLMService)
mockEmbeddings := new(MockEmbeddingsService)
mockDB := new(MockDatabase)
r := &rag.Rag{
LLM: mockLLM,
Embeddings: mockEmbeddings,
Database: mockDB,
}
docID := "abc"
mockDB.On("DeleteDocument", docID).Return(nil)
req := httptest.NewRequest(http.MethodDelete, "/api/v1/doc/abc", nil)
rec := httptest.NewRecorder()
c := e.NewContext(req, rec)
c.SetParamNames("id")
c.SetParamValues(docID)
c.Set("Rag", r)
err := api.DeleteDocHandler(c)
assert.NoError(t, err)
assert.Equal(t, http.StatusOK, rec.Code)
var resp map[string]interface{}
_ = json.Unmarshal(rec.Body.Bytes(), &resp)
assert.Equal(t, "v1", resp["version"])
// docs should be nil according to DeleteDocHandler
assert.Nil(t, resp["docs"])
// Verify mocks
mockDB.AssertExpectations(t)
}

89
tests/mock_test.go Normal file
View File

@@ -0,0 +1,89 @@
package api_test
import (
"easy_rag/internal/models"
"github.com/stretchr/testify/mock"
)
// --------------------
// Mock LLM
// --------------------
type MockLLMService struct {
mock.Mock
}
func (m *MockLLMService) Generate(prompt string) (string, error) {
args := m.Called(prompt)
return args.String(0), args.Error(1)
}
func (m *MockLLMService) GetModel() string {
args := m.Called()
return args.String(0)
}
// --------------------
// Mock Embeddings
// --------------------
type MockEmbeddingsService struct {
mock.Mock
}
func (m *MockEmbeddingsService) Vectorize(text string) ([][]float32, error) {
args := m.Called(text)
return args.Get(0).([][]float32), args.Error(1)
}
func (m *MockEmbeddingsService) GetModel() string {
args := m.Called()
return args.String(0)
}
// --------------------
// Mock Database
// --------------------
type MockDatabase struct {
mock.Mock
}
// GetDocumentInfo(id string) (models.DocumentInfo, error)
func (m *MockDatabase) GetDocumentInfo(id string) (models.Document, error) {
args := m.Called(id)
return args.Get(0).(models.Document), args.Error(1)
}
// SaveDocument(document Document) error
func (m *MockDatabase) SaveDocument(doc models.Document) error {
args := m.Called(doc)
return args.Error(0)
}
// SaveEmbeddings([]Embedding) error
func (m *MockDatabase) SaveEmbeddings(emb []models.Embedding) error {
args := m.Called(emb)
return args.Error(0)
}
// ListDocuments() ([]Document, error)
func (m *MockDatabase) ListDocuments() ([]models.Document, error) {
args := m.Called()
return args.Get(0).([]models.Document), args.Error(1)
}
// GetDocument(id string) (Document, error)
func (m *MockDatabase) GetDocument(id string) (models.Document, error) {
args := m.Called(id)
return args.Get(0).(models.Document), args.Error(1)
}
// DeleteDocument(id string) error
func (m *MockDatabase) DeleteDocument(id string) error {
args := m.Called(id)
return args.Error(0)
}
// Search(vector []float32) ([]models.Embedding, error)
func (m *MockDatabase) Search(vector [][]float32) ([]models.Embedding, error) {
args := m.Called(vector)
return args.Get(0).([]models.Embedding), args.Error(1)
}

125
tests/openrouter_test.go Normal file
View File

@@ -0,0 +1,125 @@
package api_test
import (
"context"
openroute2 "easy_rag/internal/llm/openroute"
"fmt"
"testing"
)
func TestFetchChatCompletions(t *testing.T) {
client := openroute2.NewOpenRouterClient("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")
request := openroute2.Request{
Model: "qwen/qwen2.5-vl-72b-instruct:free",
Messages: []openroute2.MessageRequest{
{openroute2.RoleUser, "Привет!", "", ""},
},
}
output, err := client.FetchChatCompletions(request)
if err != nil {
t.Errorf("error %v", err)
}
t.Logf("output: %v", output.Choices[0].Message.Content)
}
func TestFetchChatCompletionsStreaming(t *testing.T) {
client := openroute2.NewOpenRouterClient("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")
request := openroute2.Request{
Model: "qwen/qwen2.5-vl-72b-instruct:free",
Messages: []openroute2.MessageRequest{
{openroute2.RoleUser, "Привет!", "", ""},
},
Stream: true,
}
outputChan := make(chan openroute2.Response)
processingChan := make(chan interface{})
errChan := make(chan error)
ctx, cancel := context.WithCancel(context.Background())
defer cancel()
go client.FetchChatCompletionsStream(request, outputChan, processingChan, errChan, ctx)
for {
select {
case output := <-outputChan:
if len(output.Choices) > 0 {
t.Logf("%s", output.Choices[0].Delta.Content)
}
case <-processingChan:
t.Logf("Обработка\n")
case err := <-errChan:
if err != nil {
t.Errorf("Ошибка: %v", err)
return
}
return
case <-ctx.Done():
fmt.Println("Контекст отменен:", ctx.Err())
return
}
}
}
func TestFetchChatCompletionsAgentStreaming(t *testing.T) {
client := openroute2.NewOpenRouterClient("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")
agent := openroute2.NewRouterAgent(client, "qwen/qwen2.5-vl-72b-instruct:freet", openroute2.RouterAgentConfig{
Temperature: 0.7,
MaxTokens: 100,
})
outputChan := make(chan openroute2.Response)
processingChan := make(chan interface{})
errChan := make(chan error)
ctx, cancel := context.WithCancel(context.Background())
defer cancel()
chat := []openroute2.MessageRequest{
{Role: openroute2.RoleSystem, Content: "Вы полезный помощник."},
{Role: openroute2.RoleUser, Content: "Привет!"},
}
go agent.ChatStream(chat, outputChan, processingChan, errChan, ctx)
for {
select {
case output := <-outputChan:
if len(output.Choices) > 0 {
t.Logf("%s", output.Choices[0].Delta.Content)
}
case <-processingChan:
t.Logf("Обработка\n")
case err := <-errChan:
if err != nil {
t.Errorf("Ошибка: %v", err)
return
}
return
case <-ctx.Done():
fmt.Println("Контекст отменен:", ctx.Err())
return
}
}
}
func TestFetchChatCompletionsAgentSimpleChat(t *testing.T) {
client := openroute2.NewOpenRouterClient("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")
agent := openroute2.NewRouterAgentChat(client, "qwen/qwen2.5-vl-72b-instruct:free", openroute2.RouterAgentConfig{
Temperature: 0.0,
MaxTokens: 100,
}, "Вы полезный помощник, отвечайте короткими словами.")
agent.Chat("Запомни это: \"wojtess\"")
agent.Chat("Что я просил вас запомнить?")
for _, msg := range agent.Messages {
content, ok := msg.Content.(string)
if ok {
t.Logf("%s: %s", msg.Role, content)
}
}
}

1
user.yaml Normal file
View File

@@ -0,0 +1 @@
# Extra config to override default milvus.yaml